Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Biol Sci ; 290(2007): 20231636, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752846

RESUMEN

Periodic fluctuations in abiotic conditions are ubiquitous across a range of temporal scales and regulate the structure and function of ecosystems through dynamic biotic responses that are adapted to these external forces. Research has suggested that certain environmental signatures may play a crucial role in the maintenance of biodiversity and the stability of food webs, while others argue that coupled oscillators ought to promote chaos. As such, numerous uncertainties remain regarding the intersection of temporal environmental patterns and biological responses, and we lack a general understanding of the implications for food web stability. Alarmingly, global change is altering the nature of both environmental rhythms and biological rates. Here, we develop a general theory for how continuous periodic variation in productivity, across temporal scales, influences the stability of consumer-resource interactions: a fundamental building block of food webs. Our results suggest that consumer-resource dynamics under environmental forcing are highly complex and depend on asymmetries in both the speed of forcing relative to underlying dynamics and in local stability properties. These asymmetries allow for environmentally driven stabilization under fast forcing, relative to underlying dynamics, as well as extremely complex and unstable dynamics at slower periodicities. Our results also suggest that changes in naturally occurring periodicities from climate change may lead to precipitous shifts in dynamics and stability.


Asunto(s)
Biodiversidad , Ecosistema , Cambio Climático , Cadena Alimentaria , Incertidumbre
2.
Proc Natl Acad Sci U S A ; 120(31): e2212061120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487080

RESUMEN

Ecologists have long sought to understand how diversity and structure mediate the stability of whole ecosystems. For high-diversity food webs, the interactions between species are typically represented using matrices with randomly chosen interaction strengths. Unfortunately, this procedure tends to produce ecological systems with no underlying equilibrium solution, and so ecological inferences from this approach may be biased by nonbiological outcomes. Using recent computationally efficient methodological advances from metabolic networks, we employ for the first time an inverse approach to diversity-stability research. We compare classical random interaction matrices of realistic food web topology (hereafter the classical model) to feasible, biologically constrained, webs produced using the inverse approach. We show that an energetically constrained feasible model yields a far higher proportion of stable high-diversity webs than the classical random matrix approach. When we examine the energetically constrained interaction strength distributions of these matrix models, we find that although these diverse webs have consistent negative self-regulation, they do not require strong self-regulation to persist. These energetically constrained diverse webs instead show an increasing preponderance of weak interactions that are known to increase local stability. Further examination shows that some of these weak interactions naturally appear to arise in the model food webs from a constraint-generated realistic generalist-specialist trade-off, whereby generalist predators have weaker interactions than more specialized species. Additionally, the inverse technique we present here has enormous promise for understanding the role of the biological structure behind stable high-diversity webs and for linking empirical data to the theory.


Asunto(s)
Ecosistema , Cadena Alimentaria , Internet
3.
Proc Biol Sci ; 290(1995): 20222149, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987642

RESUMEN

Nature is replete with variation in the body sizes, reproductive output and generation times of species that produce life-history responses known to vary from small and fast to large and slow. Although researchers recognize that life-history speed likely dictates fundamental processes in consumer-resource interactions like productivity and stability, theoretical work remains incomplete in this critical area. Here, we examine the role of life-history speed on consumer-resource interactions by using a well-used mathematical approach that manipulates the speed of the consumer's growth rate in a consumer-resource interaction. Importantly, this approach holds the isocline geometry intact, allowing us to assess the impacts of altered life-history speed on stability (coefficient of variation, CV) without changing the underlying qualitative dynamics. Although slowing life history can be initially stabilizing, we find that in stochastic settings slowing ultimately drives highly destabilizing population disappearances, especially under reddened noise. Our results suggest that human-driven reddening of noise may decrease species stability because the autocorrelation of red noise enlarges the period and magnitude of perturbations, overwhelming a species' natural compensatory responses via a ratchet-like effect. This ratchet-like effect then pushes species' population dynamics far away from equilibria, which can lead to precipitous local extinction.


Asunto(s)
Modelos Biológicos , Reproducción , Humanos , Dinámica Poblacional , Reproducción/fisiología
4.
Ecol Appl ; 33(3): e2814, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708058

RESUMEN

Structural habitat (the three-dimensional arrangement of physical matter, abiotic and biotic, at a location) is a foundational element for the resilience and maintenance of biodiversity, yet anthropogenic development is driving the global simplification of aquatic environments. Resource managers regularly seek to conserve aquatic food webs by increasing structural habitat complexity with expected benefits to fisheries; however, the global effectiveness of such actions is unclear. Our synthesis and theoretical analyses found that the response of a consumer-resource interaction (predatory sportfish and forage fish prey) to the addition of prey refuge habitat differed among systems with low and high rates of biomass transfer from resource to consumer (i.e., biomass potential); stabilization was not the rule. Greater prey refuge habitat availability tended to stabilize systems characterized by high biomass potential while simultaneously increasing consumer densities. In contrast, increasing prey refuge habitat availability in systems characterized by low biomass potential tended to mute energy transfer and moved consumer densities toward local extinction. Importantly, biomass potential and prey refuge can have antagonistic effects on stability and relative consumer densities, and it is therefore important to consider the local conditions of a system when using habitat manipulation as a management measure. Further development of our context-dependent perspective to whole food webs, and across different environments, may help to guide structural habitat management to better restore and protect aquatic ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Biodiversidad , Peces , Conducta Predatoria
5.
Trends Ecol Evol ; 38(3): 301-312, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437144

RESUMEN

Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.


Asunto(s)
Ecosistema , Cadena Alimentaria , Biodiversidad , Metabolismo Energético
6.
Ecology ; 104(2): e3889, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36208063

RESUMEN

Portfolio effects (PEs) in ecology refer to the suite of phenomenon where the temporal variation of aggregate ecosystem properties (i.e., abundance) is lower than that of their ecosystem components. An example of this is where differential responses of species to environmental variation generate stability at higher levels of ecological organization (e.g., local community, metapopulation, metacommunity). Most of the research examining such PEs has focused on spatial or interannual variation of ecosystems; however, as global change continues to alter seasonality and ecosystem functioning, understanding the underlying food web structures that help maintain stability at multiple spatial and temporal scales is critical to managing ecological systems. Recent advances investigating diversity-stability relationships has led to the development of frameworks that incorporate a metacommunity perspective which allows for the partitioning of PEs across organizational scales (i.e., local community, metapopulation, cross-community, metacommunity) from local population dynamics (total). This partitioning yields insights into the mechanisms that generate observed PEs in nature. Here, we employed one of these recently developed frameworks on a temporally (1986-1999, 2008-2019) and spatially (five sampling stations, local communities) extensive data set of zooplankton abundance (e.g., density) within a large temperate lake to investigate how temporal (seasonal) and spatial (among site) PEs influence stability within the zooplankton metacommunity. We found that seasonal asynchrony of different zooplankton species within local communities and across communities generated the vast majority of stabilization, while spatial (i.e., metapopulation) dynamics were more synchronous and contributed little to overall system stability. Furthermore, significantly positive diversity-asynchrony relationships at the total, local- and cross-community scales were found as asynchrony was positively correlated with local Shannon diversity. Last, a comparison of PEs over the time periods, during which significant local and global changes (i.e., climate warming, invasive species) have occurred suggests that PEs may be eroding, as increasingly synchronous dynamics and declining diversity in recent years have led to a rise in metacommunity variability. We end by arguing for the critical importance of understanding seasonally driven stabilizing mechanisms as local and global changes threaten to fundamentally alter seasonal signals with potentially strong implications for the structures that lend stability to ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Zooplancton , Lagos , Estaciones del Año
7.
Ecology ; 103(12): e3817, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35852817

RESUMEN

Global change is fundamentally altering flows of natural and anthropogenic subsidies across space and time. After a pointed call for research on subsidies in the 1990s, an industry of empirical work has documented the ubiquitous role subsidies play in ecosystem structure, stability, and function. Here, we argue that physical constraints (e.g., water temperature) and species traits can govern a species' accessibility to resource subsidies, which has been largely overlooked in the subsidy literature. We examined the input of a high-quality, point-source anthropogenic subsidy (aquaculture feed) into a recipient freshwater lake food web. Using a combined bio-tracer approach, we detect a gradient in accessibility of the anthropogenic subsidy within the surrounding food web driven by the thermal preferences of three constituent species, effectively rewiring the recipient lake food web. Because aquaculture is predicted to increase significantly in coming decades to support growing human populations, and global change is altering temperature regimes, then this form of food web alteration may be expected to occur frequently. We argue that subsidy accessibility is a key characteristic of recipient food web interactions that must be considered when trying to understand the impacts of subsidies on ecosystem stability and function under continued global change.


Asunto(s)
Ecosistema , Cadena Alimentaria , Humanos , Lagos
8.
Biol Lett ; 18(3): 20210598, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35232273

RESUMEN

Local and regional habitat conditions associated with agricultural activity can fundamentally alter aquatic ecosystems. Increased nutrient inputs, channelization and reduced riparian habitat both upstream and locally contribute to the degradation of stream ecosystems and their function. Here, we examine stream food webs in watersheds that feed into Lake Erie to determine the effects of agricultural land cover on major food web energy pathways and trophic structure. Given that higher agricultural intensity can increase nutrient runoff and reduce the riparian zone and litter in-fall into streams, we predicted that generalist fish would derive less energy from the terrestrial pathway and become more omnivorous. Consistent with these predictions, we show that both mean terrestrial energy use and trophic position of the resident top consumer, creek chub (Semotilus atromaculatus), decrease with local agricultural intensity but not with watershed-level agriculture intensity. These findings suggest that local riparian buffers can maintain trophic structure even in the face of high whole-watershed agricultural intensity.


Asunto(s)
Ecosistema , Ríos , Agricultura , Animales , Peces , Cadena Alimentaria
9.
Nat Ecol Evol ; 6(3): 307-314, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027724

RESUMEN

Larger geographical areas contain more species-an observation raised to a law in ecology. Less explored is whether biodiversity changes are accompanied by a modification of interaction networks. We use data from 32 spatial interaction networks from different ecosystems to analyse how network structure changes with area. We find that basic community structure descriptors (number of species, links and links per species) increase with area following a power law. Yet, the distribution of links per species varies little with area, indicating that the fundamental organization of interactions within networks is conserved. Our null model analyses suggest that the spatial scaling of network structure is determined by factors beyond species richness and the number of links. We demonstrate that biodiversity-area relationships can be extended from species counts to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat destruction may extend from species loss to wider simplification of natural communities.


Asunto(s)
Biodiversidad , Ecosistema
10.
J Phycol ; 58(2): 308-317, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032342

RESUMEN

The presence of edible and inedible prey species in a food web can influence the strength that nutrients (bottom-up) or herbivores (top-down) have on primary production. In boreal peatlands, wetter more nutrient-rich conditions associated with ongoing climate change are expanding consumer access to aquatic habitat and promoting sources of primary production (i.e., algae) that are susceptible to trophic regulation. Here, we used an in situ mesocosm experiment to evaluate the consequences of enhanced nutrient availability and food-web manipulation (herbivore and predator exclusion) on algal assemblage structure in an Alaskan fen. Owing to the potential for herbivores to selectively consume edible algae (small cells) in favor of more resistant forms, we predicted that the proportion of less-edible algae (large cells) would determine the strength of top-down or bottom-up effects. Consistent with these expectations, we observed an increase in algal-cell size in the presence of herbivores (2-tiered food web) that was absent in the presence of a trophic cascade (3-tiered food web), suggesting that predators indirectly prevented morphological changes in the algal assemblage by limiting herbivory. Increases in algal-cell size with herbivory were driven by a greater proportion of filamentous green algae and nitrogen-fixing cyanobacteria, whose size and morphological characteristics mechanically minimize consumption. While consumer-driven shifts in algal assemblage structure were significant, they did not prevent top-down regulation of biofilm development by herbivores. Our findings show that increasing wet periods in northern peatlands will provide new avenues for trophic regulation of algal production, including directly through consumption and indirectly via a trophic cascade.


Asunto(s)
Ecosistema , Cadena Alimentaria , Cambio Climático , Herbivoria
11.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34957674

RESUMEN

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biomasa , Eutrofización , Nitrógeno , Nutrientes
12.
Commun Biol ; 4(1): 1202, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671095

RESUMEN

Modular food web theory shows how weak energetic fluxes resulting from consumptive interactions plays a major role in stabilizing food webs in space and time. Despite the reliance on energetic fluxes, food web theory surprisingly remains poorly understood within an ecosystem context that naturally focuses on material fluxes. At the same time, while ecosystem theory has employed modular nutrient-limited ecosystem models to understand how limiting nutrients alter the structure and dynamics of food webs, ecosystem theory has overlooked the role of key ecosystem interactions and their strengths (e.g., plant-nutrient; R-N) in mediating the stability of nutrient-limited ecosystems. Here, towards integrating food web theory and ecosystem theory, we first briefly review consumer-resource interactions (C-R) highlighting the relationship between the structure of C-R interactions and the stability of food web modules. We then translate this framework to nutrient-based systems, showing that the nutrient-plant interaction behaves as a coherent extension of current modular food web theory; however, in contrast to the rule that weak C-R interactions tend to be stabilizing we show that strong nutrient-plant interactions are potent stabilizers in nutrient-limited ecosystem models.


Asunto(s)
Ecosistema , Nutrientes/metabolismo , Plantas/metabolismo , Cadena Alimentaria , Fenómenos Fisiológicos de las Plantas
13.
Commun Biol ; 4(1): 975, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404903

RESUMEN

Dynamical systems theory suggests that ecosystems may exhibit alternative dynamical attractors. Such alternative attractors, as for example equilibria and cycles, have been found in the dynamics of experimental systems. Yet, for natural systems, where multiple biotic and abiotic factors simultaneously affect population dynamics, it is more challenging to distinguish alternative dynamical behaviors. Although recent research exemplifies that some natural systems can exhibit alternative states, a robust methodology for testing whether these constitute distinct dynamical attractors is currently lacking. Here, using attractor reconstruction techniques we develop such a test. Applications of the methodology to simulated, experimental and natural time series data, reveal that alternative dynamical behaviors are hard to distinguish if population dynamics are governed by purely stochastic processes. However, if population dynamics are brought about also by mechanisms internal to the system, alternative attractors can readily be detected. Since many natural populations display evidence of such internally driven dynamics, our approach offers a method for empirically testing whether ecosystems exhibit alternative dynamical attractors.


Asunto(s)
Ecosistema , Modelos Biológicos , Simulación por Computador , Dinámica Poblacional , Procesos Estocásticos
14.
Foods ; 10(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800611

RESUMEN

Building the capacity of efficiently determining the provenance of food products represents a crucial step towards the sustainability of the global food system. Despite species specific empirical examples of multi-tracer approaches to provenance, the precise benefit and efficacy of multi-tracers remains poorly understood. Here we show why, and when, data fusion of bio-tracers is an extremely powerful technique for geographical provenance discrimination. Specifically, we show using extensive simulations how, and under what conditions, geographical relationships between bio-tracers (e.g., spatial covariance) can act like a spatial fingerprint, in many naturally occurring applications likely allowing rapid identification with limited data. To highlight the theory, we outline several statistic methodologies, including artificial intelligence, and apply these methodologies as a proof of concept to a limited data set of 90 individuals of highly mobile Sockeye salmon that originate from 3 different areas. Using 17 measured bio-tracers, we demonstrate that increasing combined bio-tracers results in stronger discriminatory power. We argue such applications likely even work for such highly mobile and critical fisheries as tuna.

15.
Ecol Lett ; 24(4): 781-790, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33554469

RESUMEN

Peatlands are the most efficient natural ecosystems for long-term storage of atmospheric carbon. Our understanding of peatland carbon cycling is based entirely on bottom-up controls regulated by low nutrient availability. Recent studies have shown that top-down controls through predator-prey dynamics can influence ecosystem function, yet this has not been evaluated in peatlands to date. Here, we used a combination of nutrient enrichment and trophic-level manipulation to test the hypothesis that interactions between nutrient availability (bottom-up) and predation (top-down) influence peatland carbon fluxes. Elevated nutrients stimulated bacterial biomass and organic matter decomposition. In the absence of top-down regulation, carbon dioxide (CO2 ) respiration driven by greater decomposition was offset by elevated algal productivity. Herbivores accelerated CO2 emissions by removing algal biomass, while predators indirectly reduced CO2 emissions by muting herbivory in a trophic cascade. This study demonstrates that trophic interactions can mitigate CO2 emissions associated with elevated nutrient levels in northern peatlands.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Ciclo del Carbono , Dióxido de Carbono , Conducta Predatoria
17.
Ecol Lett ; 24(3): 398-414, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33222413

RESUMEN

Almost 50 years ago, Michael Rosenzweig pointed out that nutrient addition can destabilise food webs, leading to loss of species and reduced ecosystem function through the paradox of enrichment. Around the same time, David Tilman demonstrated that increased nutrient loading would also be expected to cause competitive exclusion leading to deleterious changes in food web diversity. While both concepts have greatly illuminated general diversity-stability theory, we currently lack a coherent framework to predict how nutrients influence food web stability across a landscape. This is a vitally important gap in our understanding, given mounting evidence of serious ecological disruption arising from anthropogenic displacement of resources and organisms. Here, we combine contemporary theory on food webs and meta-ecosystems to show that nutrient additions are indeed expected to drive loss in stability and function in human-impacted regions. Our models suggest that destabilisation is more likely to be caused by the complete loss of an equilibrium due to edible plant species being competitively excluded. In highly modified landscapes, spatial nutrient transport theory suggests that such instabilities can be amplified over vast distances from the sites of nutrient addition. Consistent with this theoretical synthesis, the empirical frequency of these distant propagating ecosystem imbalances appears to be growing. This synthesis of theory and empirical data suggests that human modification of the Earth is strongly connecting distantly separated ecosystems, causing rapid, expansive and costly nutrient-driven instabilities over vast areas of the planet. Similar to existing food web theory, the corollary to this spatial nutrient theory is that slowing down spatial nutrient pathways can be a potent means of stabilising degraded ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Humanos , Nutrientes
18.
Ecol Lett ; 23(6): 922-938, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32266766

RESUMEN

The ecological consequences of winter in freshwater systems are an understudied but rapidly emerging research area. Here, we argue that winter periods of reduced temperature and light (and potentially oxygen and resources) could play an underappreciated role in mediating the coexistence of species. This may be especially true for temperate and subarctic lakes, where seasonal changes in the thermal environment might fundamentally structure species interactions. With climate change already shortening ice-covered periods on temperate and polar lakes, consideration of how winter conditions shape biotic interactions is urgently needed. Using freshwater fishes in northern temperate lakes as a case study, we demonstrate how physiological trait differences (e.g. thermal preference, light sensitivity) drive differential behavioural responses to winter among competing species. Specifically, some species have a higher capacity for winter activity than others. Existing and new theory is presented to argue that such differential responses to winter can promote species coexistence. Importantly, if winter is a driver of niche differences that weaken competition between, relative to within species, then shrinking winter periods could threaten coexistence by tipping the scales in favour of certain sets of species over others.


Asunto(s)
Biodiversidad , Agua , Animales , Cubierta de Hielo , Lagos , Estaciones del Año
19.
Glob Chang Biol ; 25(12): 4222-4233, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31502733

RESUMEN

Globally, lake fish communities are being subjected to a range of scale-dependent anthropogenic pressures, from climate change to eutrophication, and from overexploitation to species introductions. As a consequence, the composition of these communities is being reshuffled, in most cases leading to a surge in taxonomic similarity at the regional scale termed homogenization. The drivers of homogenization remain unclear, which may be a reflection of interactions between various environmental changes. In this study, we investigate two potential drivers of the recent changes in the composition of freshwater fish communities: recreational fishing and climate change. Our results, derived from 524 lakes of Ontario, Canada sampled in two periods (1965-1982 and 2008-2012), demonstrate that the main contributors to homogenization are the dispersal of gamefish species, most of which are large predators. Alternative explanations relating to lake habitat (e.g., area, phosphorus) or variations in climate have limited explanatory power. Our analysis suggests that human-assisted migration is the primary driver of the observed compositional shifts, homogenizing freshwater fish community among Ontario lakes and generating food webs dominated by gamefish species.


Asunto(s)
Cambio Climático , Lagos , Animales , Ecosistema , Eutrofización , Peces , Humanos , Ontario
20.
J Orthop Surg Res ; 14(1): 244, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31362774

RESUMEN

BACKGROUND: Limb length discrepancy (LLD) in the setting of concurrent hindfoot and ankle deformity poses an added level of complexity to the reconstructive surgeon. Regardless of etiology, a clinically significant LLD poses additional challenges without a forthright and validated solution. The purpose of the current study is to determine whether reconstructive hindfoot and ankle surgery with concurrent lengthening through a distal tibial corticotomy is comparable to other treatment alternatives in the literature. PATIENTS AND METHODS: A retrospective review of hindfoot and ankle deformity correction utilizing Ilizarov circular external fixation with concurrent distal tibial distraction osteogenesis from July 2009 to September 2014 was conducted. RESULTS: This study included 19 patients with a mean age of 47.47 ± 13.36 years with a mean follow up of 576.13 ± 341.89 days. The mean preoperative LLD was 2.70 ± 1.22 cm and the mean operatively induced LLD was 2.53 ± 0.59 cm. The mean latency period was 9.33 ± 3.47 days and distraction rate was 0.55 ± 0.16 mm/day. The mean distraction length was 2.14 ± 0.83 cm and mean duration of external fixation was 146.42 ± 58.69 days. The time to union of all hindfoot and ankle fusions was 121.00 ± 25.66 days with an overall fusion rate of 85.71%. CONCLUSIONS: The successful treatment of hindfoot and ankle deformity correction in the setting of LLD using the technique of a distal tibial corticotomy and distraction osteogenesis is reported and illustrates an additional treatment technique with comparable measured outcomes to those previously described. We urge that each patient presentation be evaluated with consideration of all described approaches and associated literature to determine the current best reconstructive approach as future studies may validate or replace the accepted options at present.


Asunto(s)
Articulación del Tobillo/anomalías , Articulación del Tobillo/cirugía , Talón/anomalías , Talón/cirugía , Osteogénesis por Distracción/métodos , Tibia/cirugía , Adulto , Anciano , Articulación del Tobillo/diagnóstico por imagen , Femenino , Talón/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Osteogénesis por Distracción/instrumentación , Estudios Retrospectivos , Tibia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...